Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes.
نویسندگان
چکیده
Electrochemical oxidation is a promising technology to treatment of bio-refractory wastewater. Coking wastewater contains high concentration of refractory and toxic compounds and the water quality usually cannot meet the discharge standards after conventional biological treatment processes. This paper initially investigated the electrochemical oxidation using boron-doped diamond (BDD) anode for advanced treatment of coking wastewater. Under the experimental conditions (current density 20-60mAcm(-2), pH 3-11, and temperature 20-60 degrees C) using BDD anode, complete mineralization of organic pollutants was almost achieved, and surplus ammonia-nitrogen (NH(3)-N) was further removed thoroughly when pH was not adjusted or at alkaline value. Moreover, the TOC and NH(3)-N removal rates in BDD anode cell were much greater than those in other common anode systems such as SnO(2) and PbO(2) anodes cells. Given the same target to meet the National Discharge Standard of China, the energy consumption of 64kWhkgCOD(-1) observed in BDD anode system was only about 60% as much as those observed in SnO(2) and PbO(2) anode systems. Further investigation revealed that, in BDD anode cell, organic pollutants were mainly degraded by reaction with free hydroxyl radicals and electrogenerated oxidants (S(2)O(8)(2-), H(2)O(2), and other oxidants) played a less important role, while direct electrochemical oxidation and indirect electrochemical oxidation mediated by active chlorine can be negligible. These results showed great potential of BDD anode system in engineering application as a final treatment of coking wastewater.
منابع مشابه
Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.
Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (<100 mg L(-1), the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular w...
متن کاملPHENOL REMOVAL FROM WASTEWATERS BY ELECTROCHEMICAL OXIDATION USING BORON DOPED DIAMOND (BDD) AND Ti/Ti0.7Ru0.3O2 DSA ELECTRODES
Industrial wastewater containing non-biodegradable organic pollutants consists of highly toxic effluents whose treatment is necessary due to environmental and economical restrictions. In order to treat these effluents, an electrochemical process using a dimensionally stable anode (DSA) and boron-doped diamond (BDD) electrode was studied. The performance of these electrodes for COD removal from ...
متن کاملA comparative study of electrochemical oxidation of methidation organophosphorous pesticide on SnO2 and boron-doped diamond anodes
BACKGROUND Electrochemical oxidation considered to be among the best methods in waste water desalination and removing toxic metals and organic pesticides from wastewater like Methidathion. The objective of this work is to study the electrochemical oxidation of aqueous wastes containing Methidathion using boron doped diamond thin-film electrodes and SnO2, and to determine the calculated partial ...
متن کاملElectrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes
We have investigated the electrochemical oxidation of sulfuric acid on boron-doped synthetic diamond electrodes (BDD) obtained by HF CVD on p-Si. The results have shown that high current efficiency for sulfuric acid oxidation to peroxodisulfuric acid can be achieved in concentrated H2SO4 ( /2 M) at moderate temperatures (8 /10 8C). The main side reaction is oxygen evolution. Small amounts of pe...
متن کاملBoron doped diamond and glassy carbon electrodes comparative study of the oxidation behaviour of cysteine and methionine.
The electrochemical oxidation behaviour at boron doped diamond and glassy carbon electrodes of the sulphur-containing amino acids cysteine and methionine, using cyclic and differential pulse voltammetry over a wide pH range, was compared. The oxidation reactions of these amino acids are irreversible, diffusion-controlled pH dependent processes, and occur in a complex cascade mechanism. The amin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water research
دوره 43 17 شماره
صفحات -
تاریخ انتشار 2009